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Abstract
Variational Autoencoders (VAE) have been used
to denoise images with Gaussian Noise. The noise
in the images is assumed to be drawn from a Gaus-
sian distribution. Autoencoders can reduce the di-
mensionality of large-sized complex data and then
reconstruct it back with minimal loss. By tuning
the training process and adding a Gaussian noise
component the encoder-decoder system can be
made into an effective denoiser. Here we present
an extension of this concept for non-Gaussian
noise, in this case, Poisson noise, typically gener-
ated in images where the amount of incident light
per pixel is very small. Such low photon number
images are generated in the imaging of biological
samples under low light excitation. The physical
model is captured in the weights of the autoen-
coder and deploying it for noise reduction yields
a good method to reduce complex computation.
The literature reviewed presents a large dataset
of such images and reviews some traiditional and
machince learning based denoising algorithms.
We extend the method presented in the literature
and apply an autoencoder algorithm to the dataset
and present the results. In summary, this method
yields an effective method to denoise low light
microscopy images and help to speed up the data
collection in biological images. A concise sum-
mary of the work is also provided at the end.

1. Introduction
1.1. Fluorescence imaging

Fluorescence microscopy is a widespread technique in
biomedical and chemistry research, used to image small mi-
croscopic samples for study. The typical setup is common
and easily available for cheap through commercial solutions.
Confocal microscopes and widefield microscopes fall under
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this category of imaging techniques. Other more expensive
techniques include two photon microscopy which promise
even smaller levels of background noise in the generated
images, promising better research outcomes.

There is, however the problem of inherent noise in the im-
ages generated where a detector is involved. The detec-
tor can be a Silicon-based Charge Coupled Device (CCD)
camera detector, or a Photomultiplier Tube (PMT) or an
Avalanche Photodiode (APD). The problem arises because
the number of photons received per pixel is rather small
compared to traditional photography, 102 vs 105 per pixel
respectively.

The signal is inherently quantised because of quantised
nature of light and the assumption of large number statistics
per pixel falls through. Regular photography is seen to
be dominated by Gaussian Noise when the object is well
lit. That does not hold true for microscopy images under
specialised illumination conditions. The noise present in this
case is Poissonian Noise, and hence it presents a challenge
to how we process and analyze the data in such images.

There are some imaging techniques which can be employed
in such cases to reduce noise and increase the information
that can be obtained from the sample. One way is to increase
the illumination power of the laser light or the lamp. This
suffers from a big drawback that the biological or chemical
samples are both photosensitive and saturable. This means
that under strong illumination power it will either receive
considerable photodamage or it will not generate a useful
photon signal beyond a certain illumination power. This
is a common problem in photoemitters in general, that the
emitted power cannot be increased linearly with the incident
power and drops off as

Pemitted =
Pinc

Pinc + Psat

where Pinc is the incident power and Psat is a quantity de-
fined a saturation power. This fundamentally limits how
much of a signal can be obtained for some incident illumi-
nation power.

Another technique is to increase the illumination and signal
collection time, i.e. increase dwell time, exposure length,
number of line and frame averages etc. This can also dam-
age the sample and for motile objects in the frame ruin the
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subsequent images as a messy blur.

This strongly suggests a need for high speed imaging and
denoising in low-photon number microscopy. The problem
with current denoising system is the assumption of Gaussian
Noise in the system. The datasets and models all incorpo-
rate this into their processing and hence are unsuitable for
cutting-edge scientific research applications in biological
and chemical research. Such techniques can also find appli-
cations in some areas of physics wherever there is a need
of high speed, low-noise images of samples such as applied
biophysics and condensed matter physics.

1.2. The Dataset

The authors in (Zhang et al., 2019) have compiled a large
dedicated dataset of low photon images in order to facilitate
the development of denoising algorithms in Poisson Noise
limited cases.

They combine images collected from several biological sam-
ples. They have used the 2 Photon Microscopy, Confocal
Imaging and Widefield imaging and taken multiple images
of the samples. They then account of setup drift during
the acquisition and generate the ground truth by taking an
average of the obtained data over 50 images taken under
same conditions.

This dataset can then be used to build effective models for
denoising and machine learning in these settings. Further
information about the dataset is in the section related to
(Zhang et al., 2019)

1.3. Noise Modeling

To model the noise, a Poisson-Gaussian Noise has been
assumed to exist in the system. This has a Poisson compo-
nent for the shot noisen and a Gaussian component for the
thermal and other kinds of noise.

For a pixel zi the value registered by the CCD/APD/PMT is
assumed to have the expression.

zi = yi + np(yi) + ng

with yi being the ground truth, np(yi) being the Poisson
Noise and ng being the independent Gaussian Noise com-
ponent with a 0 mean.

We can assume a scaling factor of a for the detector to ac-
count for 1 photon being absorbed and producing a signal
a. This is related to the collection efficiency of the detector.
Then, assuming b as the variance of the Gaussian Distribu-
tion, we can write

(yi + np(yi))/a ∝ P (yi/a)

and
ng ∝ N(0, b)

Also assuming the distributions are independent we can
write the probability distribution of the pixel zi as

p(zi) = Σ∞
k=0(

(yi/k)
ke−yi/a

k!
∗ e−(zi−ak)2/(2b)

√
2πb

)

The key problem is finding the true value yi given some
pixel value zi.

There are several algorithms that can be applied to reduce
noise by traditional methods. The paper evaluates these
algorithms and compares them to some of the state-of-the-
art machine learning based algorithms for denoising. They
conclude that ML based methods are effective substitutes
for traditional methods. They also contend that these trained
models can be deployed in real time imaging systems and
enhance the data acquisition speeds for cutting edge science
applications.

2. Literature Review and critique
2.1. A Poisson-Gaussian Denoising Dataset with Real

Fluorescence Microscopy Images

This paper (Zhang et al., 2019) addresses the field of Fluo-
rescence microscopy and the application for deep learning
based methods for noise reduction.

Fluorescence microscopy is a valuable tool in the field of
biology and is used to image tissue samples at low illumi-
nations. The signals are inherently weak and subject to
random Poissonian noise instead of Gaussian noise due to
low photon numbers hitting the sensor.

It is impractical to increase the illumination intensity on
biological samples due to sensitive nature of the matter and
a finite fluorescence saturation rate. Long exposures are
also not recommended to avoid long exposure damage to
the samples.

Denoising algorithms, hence are a good tool for this kind of
data to improve upon the image quality and accelerate the
pace of research.

This paper addresses the lack of a large dataset for training
and benchmarking when the noise is Poissonian. There
are some datasets available for Gaussian noise. Finding
and implementing effective denoising algorithms in the low
photon count regime will require standard datasets to train
the models and evaluate the best performing ones before
deployment in real-world labs. This paper provides the
first Poisson noise-dominated dataset for denoising model
training.
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2.1.1. KEY CONTRIBUTIONS

The authors have used commercial fluorescence micro-
scopes to image real biological samples. In order to obtain
Poisson noise dominated images they keep the illumination
low enough to yield a noisy image but where features are
still discernible.

They image each sample at 20 different fields of view for 50
times, in order to obtain the noisy images with the assump-
tion that the mean of the 50 images would be the ground
truth. To obtain different Poisson noise levels from this
limited dataset they take multiple averages of the images
from the set. Given the high precision repeatability of com-
mercial imaging systems, they can ignore pixel shifting in
the captured images. This averaging also helps improve the
SNR in the images.

The denoising algorithm used is from Ref. (Foi et al., 2008)
to first estimate the parameters of the Poisson-Gaussian
noise distribution.

For benchmarking the different kinds of denoising meth-
ods available they split the dataset into test and train sets,
randomly selecting images for each. The images are split
from 512x512 to 4 of 256x256 to save on computational
resources. They test a total of 10 different algorithms and
find that the deep learning based methods work the best to
denoise the images.

The deep learning based models are able to achieve sim-
ilar denoising times as traditional methods when running
on CPU, but running them on the GPU yields upto 1 ms
processing time. This can enable real time denoising for
video up to 100 frames per second, which would make it
a invaluable tool for real time video fluorescence imaging
systems. It will enable observation of fast and dynamic
processes that aren’t clearly visible currently.

2.1.2. KEY CRITICISMS

The key drawback of this dataset is the specific case of
applicability. Biological samples imaged are from a limited
range of cell samples, including Bovine Pulmonary Artery
Endothelial (BPAE), Fixed Mouse Brain tissues, and fixed
Zebrafish embryos. This is a highly specific set of data,
and any applicability outside of the narrow range of these
biological samples would be under question.

1One more drawback is the computational expense of the
algorithms even on small image sizes of 512x512. These
images need to be split into 4 images of 256x256 in order
to be processed means that real time processing will involve
another processing layers, and can lead to artefacts when
the 4 denoised images are stitched together.

2.2. Physics-based Iterative Projection Complex Neural
Network for Phase Retrieval in Lensless
Microscopy Imaging

This paper (Zhang et al., 2021) introduces a technique to
obtain image phase in lensless microscopy imaging. Lens-
less microscopy imaging is a popular technique in biolog-
ical science and physics. The basic setup consists of a
coherent light source (typically fiber coupled laser), a semi-
transparent sample slide and a CMOS detector to detect the
image at the end. This technique can capture the intensity
of the laser transmitted through the sample and then view it
as images.

The CMOS sensor is not able to capture the phase of the
images, only transmitted intensity. This makes for incom-
plete information retrieval from the image. Phase retrieval
is an important problem in the fields of computational mi-
croscopy, X-Ray crystallography, holography and others.

2.2.1. KEY CONTRIBUTIONS

The key contribution of the paper is an interpretable, unsu-
pervised and physics based neural network that is complex
valued. The mathematics of the the Complex Fourier trans-
form is embedded into the complex weights of the neural
network. This allows it to handle the task of Fourier trans-
form and convolution with the transmission function easily.

The paper unfolds the process of alternative projections for
loss function minimization into a neural network. The flow
of the network mimics the process of alternate projections.

This incorporates the inherent physics of the problem, while
making it interpretable after each stage of the projection.

They are able to train the network without labelled data.
This strategy simplifies the network inference.

2.2.2. KEY CRITICISMS

The main drawback of the paper is the lack of reliance on
any ground truth data for phase retrieval. This is a significant
concern as a loss-minimization mathematical approach will
only yield itself to a very narrow range of applications.

Another issue is the lack of testable code and datasets to
compare other approaches to. The authors have submitted
a very small number of images with superior performance,
but there is a possibility of the images being cherry picked.
The availability of the datasets is a requirement for repro-
ducibility and benchmarking against other methods for the
phase retrieval problem.
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2.3. Unsupervised Instance Segmentation in Microscopy
Images via Panoptic Domain Adaptation and Task
Re-weighting

In this paper (Liu et al., 2020), the authors use fluorescence
microscopy images to create a Cycle Consistency Panoptic
Domain Adaptive Mask R-CNN (CyC-PDAM) architec-
ture for unsupervised nuclei segmentation in histopathology
images. They present a nuclei inpainting mechanism to re-
move auxiliary generated objects in their images. They also
design a semantic branch with a domain discriminator to
achieve panoptic level domain adaptation. Finally, in order
to dynamically add trade-off weights for task-specific loss
functions, they propose a task re-weighing mechanism.

Nuclei instance segmentation is important for pathologists
to diagnose cancers according to cell counts, the structure
of each nucleus and nuclei spatial distribution. Current
methods of supervised learning based instance segmentation
need large scale data and expert annotation. Removing the
dependence on annotations is needed to reduce workload
and improve processing times.

2.3.1. KEY CONTRIBUTIONS

There is a lack of unsupervised domain adaptation methods
for instance segmentation. Current methods ignore the do-
main shift in terms of background/foreground, spatial object
distribution and other semantic changes. Moreover they
optimize multiple loss functions simultaneously. If feature
extraction fails to yield domain invariant features, they tend
to bias towards the source which was used to train them.

This paper proposes a simple mechanism to inpaint nuclei
and remove auxiliary nuclei.

Their task re-weighing mechanism down-weighs the task
if the predictions are source biased, and up-weighed if the
obtained features are hard to differentiate.

They conduct experiments on 3 publicy available datasets
of histopathology images by unsupervised domain adapta-
tion of a fluorescence imaging dataset since fluorescence
imaging data is easier to find labeled.

They are able to obtain state-of-the-art performance com-
pared to other unsupervised domain adaptation methods for
nuclei segmentation.

2.3.2. KEY CRITICISMS

One of the major drawbacks is the limited number of or-
gans whose images form the histopathology datsset. The
organs being liver, breast,kidney, prostate, bladder, colon
and stomach means that the applicability of the methods
to other organs will be under question. They also have to
segment images into 256x256 patches, which might end up
ignoring some larger features in the dataset.

3. Implementation, Evaluation and Results
3.1. Setup Information

We perform all experiments and training on a Ryzen 4950
Mobile CPU, paired with a NVidia RTX2060 Mobile GPU
with 6 GB of VRAM, and the total system RAM is 16 GB.
The operating system is Windows 11. We also take a subset
of the total dataset (4000 images out of 12000) in order
to keep the training and testing methods within practical
bounds. The benchmark used is code provided with the
paper and we use our method to extend their model to an
autoencoder architecture. We run their code to understand
how their model works and then write our own models and
train them on the same dataset as their model. This provides
the necessary means of comparison between their and our
methods and augments the image loss as a means of gauging
the effectiveness of the model.

3.2. Autoencoder Architecture and Implementation
Details

To implement and run the autoencoder we had to limit our-
selves to a fairly simple representation of the autoencoder.
This was kep so due to the fact that the computational power
is limited on the system and other problems as discussed
later in the paper.

Figure 1. Architecture of the Encoder for denoising

We have three convolutional layers and one fully connected
layer with a latent features size of 256. This was near the
limit of the system and hence we could not increase the
complexity of the system any more than the one presented
here.

The total size of the dataset is 12000 images. We trained
and evaluated our system on a subset of 4000 images. This
was due to resource constraints on the system.

The evaluation method for testing is to calculate two quanti-
ties, the Peak Signal to Noise Ratio (PSNR) in the predicted
image, and the Mean Square Error (MSE) loss. For a pre-
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Figure 2. Architecture of the Decoder for denoising

dicted image I and ground truth J the MSE loss is described
as

l(I, J) = L = l1, l2, ..lN
T , ln = (In − Jn)

2

and MSE = sum(L). the PSNR is defined as

PSNR(I, J) = 10 ∗ log(MAXI

MSE
)

.

Then we track the evolution of the train and test PSNR and
MSE as a function of epochs and keep evaluating the model
on the data.

Since this is an autoencoder based denoiser model, we can-
not define a quantity such as accuracy and only track other
indicators such as the loss and PSNR with the training and
testing epoch. Lowering the MSE and increasing the PSNR
with each epoch shows that the model is getting better with
each training.

The dataset is randomly split into train and test and the
dataloaders provided with the sample code are used to run
the experiments, training and testing. The loss function used
is the MSE loss as defined previously and the PSNR is used
to quantify how close the images are to each other.

3.3. Problems and Challenges faced during Project

We faced several issues during this project, ranging from
trivial ones to serious ones. Some were simple enough to
be able to be resolved with simple Google searches and
StackOverFlow browsing and for some help and support
from the Teaching Assistants was required. The key decision
was to run and train the model locally on the laptop PC,
which led to a lot of these issues. Since much of applied
ML is done locally to save on compute costs, this seemed
like a practical decision at the start, but led to a lot of issues
down the line.

The first and foremost was when trying to run the code pro-
vided by the authors of the paper itself. Installing Pytorch
itself took a couple of days since it demands the installation
of CUDA. Finding and installing all of the required software
and packages before Pytorch took time. Then it took time
to find the versions compatible with the system, CUDA and
the paper itself.

Trying to execute their model then took some time. Under-
standing their code and trying to run it had a few issues. One
thing that was totally unfamiliar was how VSCode does not
run python files properly when the Run button is pressed.
Asking for help from the TA during the in-person office
hours helped to recognise this issue and get a workaround
by running it directly via the command line. Each epoch
takes a few minutes to train even on a subset of the dataset,
which means that training the model for 400 epochs as done
in the paper is not viable.

The dataset also consists of a large number of images, which
severely limits how complex a model can be made to run.
One very frequent error was that the GPU was out of mem-
ory, with the program trying to assign 9 or 10 Gigabytes of
memory when only 6 Gigabytes is physically present. This
caused us to reduce our model’s complexity and restrict how
many epochs we could train it for. Having fully connected
(FC) layers adds a large number of parameters for image
sizes of 256X256, and such large FC layers cannot fit in
the GPU memory. Typically models are being trained for
400-500 epochs in the papers that were read and considered,
but that number is impractical given the quick prototyping
required in this particular application.

4. Results and Discussion
During training, the model is able to reduce its loss to a
saturation point. The loss then stabilizes and does not reduce
any further.

The plot of the MSE Loss with the epochs is shown below.

This is a worse performance than the DNCNN (Zhang et al.,
2017) based model code as provided with the paper.

To present a comparison with the DNCNN method presented
in the paper we present some denoised images as follows.

The DNCNN model works better than our model and is able
to present some denoised images along with a reduction in
the loss function.

This is as expected since the autoencoder is among the
simplest models that are deployed. More complex FC layers
cannot be accommodated into the memory of the GPU and
hence it is difficult to make it better. More sophisticated
models are expected to perform better on specific datasets
and hence this result is well within the realm of expectations.
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Figure 3. Train Loss for the model

Figure 4. Test Loss for the model

5. Summary
• We present an autoencoder-based model for denoising

Poisson Loss limited biological images.

• We download the dataset provided in the literature
reviewed and use it for the models.

• We run testing and training on the DNCNN model
provided in the paper. We use it to benchmark the
autoencoder model.

• We train and test the autoencoder model and observe
the results are not as good as the DNCNN model

• The reason for this performance deficiency is the large
size of the fully connected layers in the model. They
cannot be fit into the GPU memory

Figure 5. Train Loss for the DNCNN model

Figure 6. Test Loss for the DNCNN model

• We are restricted to fairly simple models for training
and testing.

• The DNCNN model has no fully connected layers and
hence a lower number of parameters. It can fit and
train in the limited GPU memory.

• To fully train and run the autoencoder effectively, more
compute power and time is needed.
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